Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

cond1(true, x, y, z) → cond2(gr(x, 0), x, y, z)
cond2(true, x, y, z) → cond1(gr(add(x, y), z), p(x), y, z)
cond2(false, x, y, z) → cond3(gr(y, 0), x, y, z)
cond3(true, x, y, z) → cond1(gr(add(x, y), z), x, p(y), z)
cond3(false, x, y, z) → cond1(gr(add(x, y), z), x, y, z)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
add(0, x) → x
add(s(x), y) → s(add(x, y))
p(0) → 0
p(s(x)) → x

Q is empty.


QTRS
  ↳ AAECC Innermost

Q restricted rewrite system:
The TRS R consists of the following rules:

cond1(true, x, y, z) → cond2(gr(x, 0), x, y, z)
cond2(true, x, y, z) → cond1(gr(add(x, y), z), p(x), y, z)
cond2(false, x, y, z) → cond3(gr(y, 0), x, y, z)
cond3(true, x, y, z) → cond1(gr(add(x, y), z), x, p(y), z)
cond3(false, x, y, z) → cond1(gr(add(x, y), z), x, y, z)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
add(0, x) → x
add(s(x), y) → s(add(x, y))
p(0) → 0
p(s(x)) → x

Q is empty.

We have applied [19,8] to switch to innermost. The TRS R 1 is

gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
add(0, x) → x
add(s(x), y) → s(add(x, y))
p(0) → 0
p(s(x)) → x

The TRS R 2 is

cond1(true, x, y, z) → cond2(gr(x, 0), x, y, z)
cond2(true, x, y, z) → cond1(gr(add(x, y), z), p(x), y, z)
cond2(false, x, y, z) → cond3(gr(y, 0), x, y, z)
cond3(true, x, y, z) → cond1(gr(add(x, y), z), x, p(y), z)
cond3(false, x, y, z) → cond1(gr(add(x, y), z), x, y, z)

The signature Sigma is {cond1, cond3, cond2}

↳ QTRS
  ↳ AAECC Innermost
QTRS
      ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

cond1(true, x, y, z) → cond2(gr(x, 0), x, y, z)
cond2(true, x, y, z) → cond1(gr(add(x, y), z), p(x), y, z)
cond2(false, x, y, z) → cond3(gr(y, 0), x, y, z)
cond3(true, x, y, z) → cond1(gr(add(x, y), z), x, p(y), z)
cond3(false, x, y, z) → cond1(gr(add(x, y), z), x, y, z)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
add(0, x) → x
add(s(x), y) → s(add(x, y))
p(0) → 0
p(s(x)) → x

The set Q consists of the following terms:

cond1(true, x0, x1, x2)
cond2(true, x0, x1, x2)
cond2(false, x0, x1, x2)
cond3(true, x0, x1, x2)
cond3(false, x0, x1, x2)
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
add(0, x0)
add(s(x0), x1)
p(0)
p(s(x0))


Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

COND2(true, x, y, z) → ADD(x, y)
COND1(true, x, y, z) → GR(x, 0)
COND3(true, x, y, z) → GR(add(x, y), z)
COND1(true, x, y, z) → COND2(gr(x, 0), x, y, z)
COND3(false, x, y, z) → ADD(x, y)
COND3(false, x, y, z) → COND1(gr(add(x, y), z), x, y, z)
COND3(false, x, y, z) → GR(add(x, y), z)
COND2(true, x, y, z) → COND1(gr(add(x, y), z), p(x), y, z)
COND2(false, x, y, z) → GR(y, 0)
COND3(true, x, y, z) → COND1(gr(add(x, y), z), x, p(y), z)
COND3(true, x, y, z) → P(y)
COND2(false, x, y, z) → COND3(gr(y, 0), x, y, z)
COND2(true, x, y, z) → GR(add(x, y), z)
ADD(s(x), y) → ADD(x, y)
COND2(true, x, y, z) → P(x)
COND3(true, x, y, z) → ADD(x, y)
GR(s(x), s(y)) → GR(x, y)

The TRS R consists of the following rules:

cond1(true, x, y, z) → cond2(gr(x, 0), x, y, z)
cond2(true, x, y, z) → cond1(gr(add(x, y), z), p(x), y, z)
cond2(false, x, y, z) → cond3(gr(y, 0), x, y, z)
cond3(true, x, y, z) → cond1(gr(add(x, y), z), x, p(y), z)
cond3(false, x, y, z) → cond1(gr(add(x, y), z), x, y, z)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
add(0, x) → x
add(s(x), y) → s(add(x, y))
p(0) → 0
p(s(x)) → x

The set Q consists of the following terms:

cond1(true, x0, x1, x2)
cond2(true, x0, x1, x2)
cond2(false, x0, x1, x2)
cond3(true, x0, x1, x2)
cond3(false, x0, x1, x2)
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
add(0, x0)
add(s(x0), x1)
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
QDP
          ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

COND2(true, x, y, z) → ADD(x, y)
COND1(true, x, y, z) → GR(x, 0)
COND3(true, x, y, z) → GR(add(x, y), z)
COND1(true, x, y, z) → COND2(gr(x, 0), x, y, z)
COND3(false, x, y, z) → ADD(x, y)
COND3(false, x, y, z) → COND1(gr(add(x, y), z), x, y, z)
COND3(false, x, y, z) → GR(add(x, y), z)
COND2(true, x, y, z) → COND1(gr(add(x, y), z), p(x), y, z)
COND2(false, x, y, z) → GR(y, 0)
COND3(true, x, y, z) → COND1(gr(add(x, y), z), x, p(y), z)
COND3(true, x, y, z) → P(y)
COND2(false, x, y, z) → COND3(gr(y, 0), x, y, z)
COND2(true, x, y, z) → GR(add(x, y), z)
ADD(s(x), y) → ADD(x, y)
COND2(true, x, y, z) → P(x)
COND3(true, x, y, z) → ADD(x, y)
GR(s(x), s(y)) → GR(x, y)

The TRS R consists of the following rules:

cond1(true, x, y, z) → cond2(gr(x, 0), x, y, z)
cond2(true, x, y, z) → cond1(gr(add(x, y), z), p(x), y, z)
cond2(false, x, y, z) → cond3(gr(y, 0), x, y, z)
cond3(true, x, y, z) → cond1(gr(add(x, y), z), x, p(y), z)
cond3(false, x, y, z) → cond1(gr(add(x, y), z), x, y, z)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
add(0, x) → x
add(s(x), y) → s(add(x, y))
p(0) → 0
p(s(x)) → x

The set Q consists of the following terms:

cond1(true, x0, x1, x2)
cond2(true, x0, x1, x2)
cond2(false, x0, x1, x2)
cond3(true, x0, x1, x2)
cond3(false, x0, x1, x2)
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
add(0, x0)
add(s(x0), x1)
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 3 SCCs with 10 less nodes.

↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
QDP
                ↳ UsableRulesProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ADD(s(x), y) → ADD(x, y)

The TRS R consists of the following rules:

cond1(true, x, y, z) → cond2(gr(x, 0), x, y, z)
cond2(true, x, y, z) → cond1(gr(add(x, y), z), p(x), y, z)
cond2(false, x, y, z) → cond3(gr(y, 0), x, y, z)
cond3(true, x, y, z) → cond1(gr(add(x, y), z), x, p(y), z)
cond3(false, x, y, z) → cond1(gr(add(x, y), z), x, y, z)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
add(0, x) → x
add(s(x), y) → s(add(x, y))
p(0) → 0
p(s(x)) → x

The set Q consists of the following terms:

cond1(true, x0, x1, x2)
cond2(true, x0, x1, x2)
cond2(false, x0, x1, x2)
cond3(true, x0, x1, x2)
cond3(false, x0, x1, x2)
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
add(0, x0)
add(s(x0), x1)
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ADD(s(x), y) → ADD(x, y)

R is empty.
The set Q consists of the following terms:

cond1(true, x0, x1, x2)
cond2(true, x0, x1, x2)
cond2(false, x0, x1, x2)
cond3(true, x0, x1, x2)
cond3(false, x0, x1, x2)
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
add(0, x0)
add(s(x0), x1)
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

cond1(true, x0, x1, x2)
cond2(true, x0, x1, x2)
cond2(false, x0, x1, x2)
cond3(true, x0, x1, x2)
cond3(false, x0, x1, x2)
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
add(0, x0)
add(s(x0), x1)
p(0)
p(s(x0))



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ADD(s(x), y) → ADD(x, y)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
QDP
                ↳ UsableRulesProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GR(s(x), s(y)) → GR(x, y)

The TRS R consists of the following rules:

cond1(true, x, y, z) → cond2(gr(x, 0), x, y, z)
cond2(true, x, y, z) → cond1(gr(add(x, y), z), p(x), y, z)
cond2(false, x, y, z) → cond3(gr(y, 0), x, y, z)
cond3(true, x, y, z) → cond1(gr(add(x, y), z), x, p(y), z)
cond3(false, x, y, z) → cond1(gr(add(x, y), z), x, y, z)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
add(0, x) → x
add(s(x), y) → s(add(x, y))
p(0) → 0
p(s(x)) → x

The set Q consists of the following terms:

cond1(true, x0, x1, x2)
cond2(true, x0, x1, x2)
cond2(false, x0, x1, x2)
cond3(true, x0, x1, x2)
cond3(false, x0, x1, x2)
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
add(0, x0)
add(s(x0), x1)
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GR(s(x), s(y)) → GR(x, y)

R is empty.
The set Q consists of the following terms:

cond1(true, x0, x1, x2)
cond2(true, x0, x1, x2)
cond2(false, x0, x1, x2)
cond3(true, x0, x1, x2)
cond3(false, x0, x1, x2)
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
add(0, x0)
add(s(x0), x1)
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

cond1(true, x0, x1, x2)
cond2(true, x0, x1, x2)
cond2(false, x0, x1, x2)
cond3(true, x0, x1, x2)
cond3(false, x0, x1, x2)
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
add(0, x0)
add(s(x0), x1)
p(0)
p(s(x0))



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GR(s(x), s(y)) → GR(x, y)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
QDP
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

COND3(true, x, y, z) → COND1(gr(add(x, y), z), x, p(y), z)
COND2(false, x, y, z) → COND3(gr(y, 0), x, y, z)
COND1(true, x, y, z) → COND2(gr(x, 0), x, y, z)
COND3(false, x, y, z) → COND1(gr(add(x, y), z), x, y, z)
COND2(true, x, y, z) → COND1(gr(add(x, y), z), p(x), y, z)

The TRS R consists of the following rules:

cond1(true, x, y, z) → cond2(gr(x, 0), x, y, z)
cond2(true, x, y, z) → cond1(gr(add(x, y), z), p(x), y, z)
cond2(false, x, y, z) → cond3(gr(y, 0), x, y, z)
cond3(true, x, y, z) → cond1(gr(add(x, y), z), x, p(y), z)
cond3(false, x, y, z) → cond1(gr(add(x, y), z), x, y, z)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
add(0, x) → x
add(s(x), y) → s(add(x, y))
p(0) → 0
p(s(x)) → x

The set Q consists of the following terms:

cond1(true, x0, x1, x2)
cond2(true, x0, x1, x2)
cond2(false, x0, x1, x2)
cond3(true, x0, x1, x2)
cond3(false, x0, x1, x2)
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
add(0, x0)
add(s(x0), x1)
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof

Q DP problem:
The TRS P consists of the following rules:

COND3(true, x, y, z) → COND1(gr(add(x, y), z), x, p(y), z)
COND2(false, x, y, z) → COND3(gr(y, 0), x, y, z)
COND1(true, x, y, z) → COND2(gr(x, 0), x, y, z)
COND3(false, x, y, z) → COND1(gr(add(x, y), z), x, y, z)
COND2(true, x, y, z) → COND1(gr(add(x, y), z), p(x), y, z)

The TRS R consists of the following rules:

add(0, x) → x
add(s(x), y) → s(add(x, y))
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x

The set Q consists of the following terms:

cond1(true, x0, x1, x2)
cond2(true, x0, x1, x2)
cond2(false, x0, x1, x2)
cond3(true, x0, x1, x2)
cond3(false, x0, x1, x2)
gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
add(0, x0)
add(s(x0), x1)
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

cond1(true, x0, x1, x2)
cond2(true, x0, x1, x2)
cond2(false, x0, x1, x2)
cond3(true, x0, x1, x2)
cond3(false, x0, x1, x2)



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

COND3(true, x, y, z) → COND1(gr(add(x, y), z), x, p(y), z)
COND2(false, x, y, z) → COND3(gr(y, 0), x, y, z)
COND1(true, x, y, z) → COND2(gr(x, 0), x, y, z)
COND3(false, x, y, z) → COND1(gr(add(x, y), z), x, y, z)
COND2(true, x, y, z) → COND1(gr(add(x, y), z), p(x), y, z)

The TRS R consists of the following rules:

add(0, x) → x
add(s(x), y) → s(add(x, y))
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x

The set Q consists of the following terms:

gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
add(0, x0)
add(s(x0), x1)
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule COND3(true, x, y, z) → COND1(gr(add(x, y), z), x, p(y), z) at position [0] we obtained the following new rules:

COND3(true, s(x0), x1, y2) → COND1(gr(s(add(x0, x1)), y2), s(x0), p(x1), y2)
COND3(true, 0, x0, y2) → COND1(gr(x0, y2), 0, p(x0), y2)



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
QDP
                            ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

COND3(true, s(x0), x1, y2) → COND1(gr(s(add(x0, x1)), y2), s(x0), p(x1), y2)
COND2(false, x, y, z) → COND3(gr(y, 0), x, y, z)
COND3(true, 0, x0, y2) → COND1(gr(x0, y2), 0, p(x0), y2)
COND1(true, x, y, z) → COND2(gr(x, 0), x, y, z)
COND3(false, x, y, z) → COND1(gr(add(x, y), z), x, y, z)
COND2(true, x, y, z) → COND1(gr(add(x, y), z), p(x), y, z)

The TRS R consists of the following rules:

add(0, x) → x
add(s(x), y) → s(add(x, y))
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x

The set Q consists of the following terms:

gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
add(0, x0)
add(s(x0), x1)
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule COND2(false, x, y, z) → COND3(gr(y, 0), x, y, z) at position [0] we obtained the following new rules:

COND2(false, y0, s(x0), y2) → COND3(true, y0, s(x0), y2)
COND2(false, y0, 0, y2) → COND3(false, y0, 0, y2)



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Narrowing
QDP
                                ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

COND2(false, y0, s(x0), y2) → COND3(true, y0, s(x0), y2)
COND3(true, s(x0), x1, y2) → COND1(gr(s(add(x0, x1)), y2), s(x0), p(x1), y2)
COND3(true, 0, x0, y2) → COND1(gr(x0, y2), 0, p(x0), y2)
COND1(true, x, y, z) → COND2(gr(x, 0), x, y, z)
COND2(false, y0, 0, y2) → COND3(false, y0, 0, y2)
COND3(false, x, y, z) → COND1(gr(add(x, y), z), x, y, z)
COND2(true, x, y, z) → COND1(gr(add(x, y), z), p(x), y, z)

The TRS R consists of the following rules:

add(0, x) → x
add(s(x), y) → s(add(x, y))
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x

The set Q consists of the following terms:

gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
add(0, x0)
add(s(x0), x1)
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule COND1(true, x, y, z) → COND2(gr(x, 0), x, y, z) at position [0] we obtained the following new rules:

COND1(true, 0, y1, y2) → COND2(false, 0, y1, y2)
COND1(true, s(x0), y1, y2) → COND2(true, s(x0), y1, y2)



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ Narrowing
QDP
                                    ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

COND3(true, s(x0), x1, y2) → COND1(gr(s(add(x0, x1)), y2), s(x0), p(x1), y2)
COND2(false, y0, s(x0), y2) → COND3(true, y0, s(x0), y2)
COND1(true, 0, y1, y2) → COND2(false, 0, y1, y2)
COND3(true, 0, x0, y2) → COND1(gr(x0, y2), 0, p(x0), y2)
COND3(false, x, y, z) → COND1(gr(add(x, y), z), x, y, z)
COND2(false, y0, 0, y2) → COND3(false, y0, 0, y2)
COND2(true, x, y, z) → COND1(gr(add(x, y), z), p(x), y, z)
COND1(true, s(x0), y1, y2) → COND2(true, s(x0), y1, y2)

The TRS R consists of the following rules:

add(0, x) → x
add(s(x), y) → s(add(x, y))
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x

The set Q consists of the following terms:

gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
add(0, x0)
add(s(x0), x1)
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule COND3(false, x, y, z) → COND1(gr(add(x, y), z), x, y, z) at position [0] we obtained the following new rules:

COND3(false, 0, x0, y2) → COND1(gr(x0, y2), 0, x0, y2)
COND3(false, s(x0), x1, y2) → COND1(gr(s(add(x0, x1)), y2), s(x0), x1, y2)



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ Narrowing
                                  ↳ QDP
                                    ↳ Narrowing
QDP
                                        ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

COND2(false, y0, s(x0), y2) → COND3(true, y0, s(x0), y2)
COND3(true, s(x0), x1, y2) → COND1(gr(s(add(x0, x1)), y2), s(x0), p(x1), y2)
COND3(false, s(x0), x1, y2) → COND1(gr(s(add(x0, x1)), y2), s(x0), x1, y2)
COND1(true, 0, y1, y2) → COND2(false, 0, y1, y2)
COND3(true, 0, x0, y2) → COND1(gr(x0, y2), 0, p(x0), y2)
COND3(false, 0, x0, y2) → COND1(gr(x0, y2), 0, x0, y2)
COND2(false, y0, 0, y2) → COND3(false, y0, 0, y2)
COND2(true, x, y, z) → COND1(gr(add(x, y), z), p(x), y, z)
COND1(true, s(x0), y1, y2) → COND2(true, s(x0), y1, y2)

The TRS R consists of the following rules:

add(0, x) → x
add(s(x), y) → s(add(x, y))
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x

The set Q consists of the following terms:

gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
add(0, x0)
add(s(x0), x1)
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule COND2(true, x, y, z) → COND1(gr(add(x, y), z), p(x), y, z) at position [0] we obtained the following new rules:

COND2(true, 0, x0, y2) → COND1(gr(x0, y2), p(0), x0, y2)
COND2(true, s(x0), x1, y2) → COND1(gr(s(add(x0, x1)), y2), p(s(x0)), x1, y2)



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ Narrowing
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ Narrowing
QDP
                                            ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

COND3(true, s(x0), x1, y2) → COND1(gr(s(add(x0, x1)), y2), s(x0), p(x1), y2)
COND2(false, y0, s(x0), y2) → COND3(true, y0, s(x0), y2)
COND1(true, 0, y1, y2) → COND2(false, 0, y1, y2)
COND3(false, s(x0), x1, y2) → COND1(gr(s(add(x0, x1)), y2), s(x0), x1, y2)
COND2(true, 0, x0, y2) → COND1(gr(x0, y2), p(0), x0, y2)
COND3(true, 0, x0, y2) → COND1(gr(x0, y2), 0, p(x0), y2)
COND3(false, 0, x0, y2) → COND1(gr(x0, y2), 0, x0, y2)
COND2(false, y0, 0, y2) → COND3(false, y0, 0, y2)
COND2(true, s(x0), x1, y2) → COND1(gr(s(add(x0, x1)), y2), p(s(x0)), x1, y2)
COND1(true, s(x0), y1, y2) → COND2(true, s(x0), y1, y2)

The TRS R consists of the following rules:

add(0, x) → x
add(s(x), y) → s(add(x, y))
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x

The set Q consists of the following terms:

gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
add(0, x0)
add(s(x0), x1)
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ Narrowing
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ Narrowing
                                          ↳ QDP
                                            ↳ DependencyGraphProof
QDP
                                                ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

COND3(true, s(x0), x1, y2) → COND1(gr(s(add(x0, x1)), y2), s(x0), p(x1), y2)
COND2(false, y0, s(x0), y2) → COND3(true, y0, s(x0), y2)
COND3(false, s(x0), x1, y2) → COND1(gr(s(add(x0, x1)), y2), s(x0), x1, y2)
COND1(true, 0, y1, y2) → COND2(false, 0, y1, y2)
COND3(true, 0, x0, y2) → COND1(gr(x0, y2), 0, p(x0), y2)
COND3(false, 0, x0, y2) → COND1(gr(x0, y2), 0, x0, y2)
COND2(false, y0, 0, y2) → COND3(false, y0, 0, y2)
COND2(true, s(x0), x1, y2) → COND1(gr(s(add(x0, x1)), y2), p(s(x0)), x1, y2)
COND1(true, s(x0), y1, y2) → COND2(true, s(x0), y1, y2)

The TRS R consists of the following rules:

add(0, x) → x
add(s(x), y) → s(add(x, y))
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x

The set Q consists of the following terms:

gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
add(0, x0)
add(s(x0), x1)
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule COND2(true, s(x0), x1, y2) → COND1(gr(s(add(x0, x1)), y2), p(s(x0)), x1, y2) at position [1] we obtained the following new rules:

COND2(true, s(x0), x1, y2) → COND1(gr(s(add(x0, x1)), y2), x0, x1, y2)



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ Narrowing
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ Narrowing
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ QDP
                                                ↳ Rewriting
QDP
                                                    ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

COND2(false, y0, s(x0), y2) → COND3(true, y0, s(x0), y2)
COND3(true, s(x0), x1, y2) → COND1(gr(s(add(x0, x1)), y2), s(x0), p(x1), y2)
COND1(true, 0, y1, y2) → COND2(false, 0, y1, y2)
COND3(false, s(x0), x1, y2) → COND1(gr(s(add(x0, x1)), y2), s(x0), x1, y2)
COND2(true, s(x0), x1, y2) → COND1(gr(s(add(x0, x1)), y2), x0, x1, y2)
COND3(true, 0, x0, y2) → COND1(gr(x0, y2), 0, p(x0), y2)
COND3(false, 0, x0, y2) → COND1(gr(x0, y2), 0, x0, y2)
COND2(false, y0, 0, y2) → COND3(false, y0, 0, y2)
COND1(true, s(x0), y1, y2) → COND2(true, s(x0), y1, y2)

The TRS R consists of the following rules:

add(0, x) → x
add(s(x), y) → s(add(x, y))
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x

The set Q consists of the following terms:

gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
add(0, x0)
add(s(x0), x1)
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule COND3(false, 0, x0, y2) → COND1(gr(x0, y2), 0, x0, y2) at position [0] we obtained the following new rules:

COND3(false, 0, s(x0), 0) → COND1(true, 0, s(x0), 0)
COND3(false, 0, 0, x0) → COND1(false, 0, 0, x0)
COND3(false, 0, s(x0), s(x1)) → COND1(gr(x0, x1), 0, s(x0), s(x1))



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ Narrowing
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ Narrowing
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Narrowing
QDP
                                                        ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

COND3(true, s(x0), x1, y2) → COND1(gr(s(add(x0, x1)), y2), s(x0), p(x1), y2)
COND2(false, y0, s(x0), y2) → COND3(true, y0, s(x0), y2)
COND3(false, 0, s(x0), 0) → COND1(true, 0, s(x0), 0)
COND3(false, s(x0), x1, y2) → COND1(gr(s(add(x0, x1)), y2), s(x0), x1, y2)
COND1(true, 0, y1, y2) → COND2(false, 0, y1, y2)
COND3(false, 0, 0, x0) → COND1(false, 0, 0, x0)
COND2(true, s(x0), x1, y2) → COND1(gr(s(add(x0, x1)), y2), x0, x1, y2)
COND3(true, 0, x0, y2) → COND1(gr(x0, y2), 0, p(x0), y2)
COND2(false, y0, 0, y2) → COND3(false, y0, 0, y2)
COND1(true, s(x0), y1, y2) → COND2(true, s(x0), y1, y2)
COND3(false, 0, s(x0), s(x1)) → COND1(gr(x0, x1), 0, s(x0), s(x1))

The TRS R consists of the following rules:

add(0, x) → x
add(s(x), y) → s(add(x, y))
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x

The set Q consists of the following terms:

gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
add(0, x0)
add(s(x0), x1)
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 3 less nodes.

↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ Narrowing
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ Narrowing
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Narrowing
                                                      ↳ QDP
                                                        ↳ DependencyGraphProof
QDP
                                                            ↳ Instantiation

Q DP problem:
The TRS P consists of the following rules:

COND3(true, s(x0), x1, y2) → COND1(gr(s(add(x0, x1)), y2), s(x0), p(x1), y2)
COND2(false, y0, s(x0), y2) → COND3(true, y0, s(x0), y2)
COND3(false, s(x0), x1, y2) → COND1(gr(s(add(x0, x1)), y2), s(x0), x1, y2)
COND1(true, 0, y1, y2) → COND2(false, 0, y1, y2)
COND2(true, s(x0), x1, y2) → COND1(gr(s(add(x0, x1)), y2), x0, x1, y2)
COND3(true, 0, x0, y2) → COND1(gr(x0, y2), 0, p(x0), y2)
COND2(false, y0, 0, y2) → COND3(false, y0, 0, y2)
COND1(true, s(x0), y1, y2) → COND2(true, s(x0), y1, y2)

The TRS R consists of the following rules:

add(0, x) → x
add(s(x), y) → s(add(x, y))
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x

The set Q consists of the following terms:

gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
add(0, x0)
add(s(x0), x1)
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.
By instantiating [15] the rule COND2(false, y0, s(x0), y2) → COND3(true, y0, s(x0), y2) we obtained the following new rules:

COND2(false, 0, s(x1), z1) → COND3(true, 0, s(x1), z1)



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ Narrowing
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ Narrowing
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Narrowing
                                                      ↳ QDP
                                                        ↳ DependencyGraphProof
                                                          ↳ QDP
                                                            ↳ Instantiation
QDP
                                                                ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

COND2(false, 0, s(x1), z1) → COND3(true, 0, s(x1), z1)
COND3(true, s(x0), x1, y2) → COND1(gr(s(add(x0, x1)), y2), s(x0), p(x1), y2)
COND1(true, 0, y1, y2) → COND2(false, 0, y1, y2)
COND3(false, s(x0), x1, y2) → COND1(gr(s(add(x0, x1)), y2), s(x0), x1, y2)
COND2(true, s(x0), x1, y2) → COND1(gr(s(add(x0, x1)), y2), x0, x1, y2)
COND3(true, 0, x0, y2) → COND1(gr(x0, y2), 0, p(x0), y2)
COND2(false, y0, 0, y2) → COND3(false, y0, 0, y2)
COND1(true, s(x0), y1, y2) → COND2(true, s(x0), y1, y2)

The TRS R consists of the following rules:

add(0, x) → x
add(s(x), y) → s(add(x, y))
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x

The set Q consists of the following terms:

gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
add(0, x0)
add(s(x0), x1)
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ Narrowing
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ Narrowing
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Narrowing
                                                      ↳ QDP
                                                        ↳ DependencyGraphProof
                                                          ↳ QDP
                                                            ↳ Instantiation
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
QDP
                                                                    ↳ Instantiation

Q DP problem:
The TRS P consists of the following rules:

COND2(false, 0, s(x1), z1) → COND3(true, 0, s(x1), z1)
COND3(false, s(x0), x1, y2) → COND1(gr(s(add(x0, x1)), y2), s(x0), x1, y2)
COND1(true, 0, y1, y2) → COND2(false, 0, y1, y2)
COND2(true, s(x0), x1, y2) → COND1(gr(s(add(x0, x1)), y2), x0, x1, y2)
COND3(true, 0, x0, y2) → COND1(gr(x0, y2), 0, p(x0), y2)
COND2(false, y0, 0, y2) → COND3(false, y0, 0, y2)
COND1(true, s(x0), y1, y2) → COND2(true, s(x0), y1, y2)

The TRS R consists of the following rules:

add(0, x) → x
add(s(x), y) → s(add(x, y))
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x

The set Q consists of the following terms:

gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
add(0, x0)
add(s(x0), x1)
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.
By instantiating [15] the rule COND2(false, y0, 0, y2) → COND3(false, y0, 0, y2) we obtained the following new rules:

COND2(false, 0, 0, z1) → COND3(false, 0, 0, z1)



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ Narrowing
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ Narrowing
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Narrowing
                                                      ↳ QDP
                                                        ↳ DependencyGraphProof
                                                          ↳ QDP
                                                            ↳ Instantiation
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ QDP
                                                                    ↳ Instantiation
QDP
                                                                        ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

COND2(false, 0, s(x1), z1) → COND3(true, 0, s(x1), z1)
COND1(true, 0, y1, y2) → COND2(false, 0, y1, y2)
COND3(false, s(x0), x1, y2) → COND1(gr(s(add(x0, x1)), y2), s(x0), x1, y2)
COND2(true, s(x0), x1, y2) → COND1(gr(s(add(x0, x1)), y2), x0, x1, y2)
COND3(true, 0, x0, y2) → COND1(gr(x0, y2), 0, p(x0), y2)
COND2(false, 0, 0, z1) → COND3(false, 0, 0, z1)
COND1(true, s(x0), y1, y2) → COND2(true, s(x0), y1, y2)

The TRS R consists of the following rules:

add(0, x) → x
add(s(x), y) → s(add(x, y))
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x

The set Q consists of the following terms:

gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
add(0, x0)
add(s(x0), x1)
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 2 SCCs with 2 less nodes.

↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ Narrowing
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ Narrowing
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Narrowing
                                                      ↳ QDP
                                                        ↳ DependencyGraphProof
                                                          ↳ QDP
                                                            ↳ Instantiation
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ QDP
                                                                    ↳ Instantiation
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ AND
QDP
                                                                              ↳ UsableRulesProof
                                                                            ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

COND2(false, 0, s(x1), z1) → COND3(true, 0, s(x1), z1)
COND1(true, 0, y1, y2) → COND2(false, 0, y1, y2)
COND3(true, 0, x0, y2) → COND1(gr(x0, y2), 0, p(x0), y2)

The TRS R consists of the following rules:

add(0, x) → x
add(s(x), y) → s(add(x, y))
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x

The set Q consists of the following terms:

gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
add(0, x0)
add(s(x0), x1)
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ Narrowing
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ Narrowing
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Narrowing
                                                      ↳ QDP
                                                        ↳ DependencyGraphProof
                                                          ↳ QDP
                                                            ↳ Instantiation
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ QDP
                                                                    ↳ Instantiation
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ AND
                                                                            ↳ QDP
                                                                              ↳ UsableRulesProof
QDP
                                                                                  ↳ QReductionProof
                                                                            ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

COND2(false, 0, s(x1), z1) → COND3(true, 0, s(x1), z1)
COND1(true, 0, y1, y2) → COND2(false, 0, y1, y2)
COND3(true, 0, x0, y2) → COND1(gr(x0, y2), 0, p(x0), y2)

The TRS R consists of the following rules:

gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x

The set Q consists of the following terms:

gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
add(0, x0)
add(s(x0), x1)
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

add(0, x0)
add(s(x0), x1)



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ Narrowing
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ Narrowing
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Narrowing
                                                      ↳ QDP
                                                        ↳ DependencyGraphProof
                                                          ↳ QDP
                                                            ↳ Instantiation
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ QDP
                                                                    ↳ Instantiation
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ AND
                                                                            ↳ QDP
                                                                              ↳ UsableRulesProof
                                                                                ↳ QDP
                                                                                  ↳ QReductionProof
QDP
                                                                                      ↳ Instantiation
                                                                            ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

COND2(false, 0, s(x1), z1) → COND3(true, 0, s(x1), z1)
COND1(true, 0, y1, y2) → COND2(false, 0, y1, y2)
COND3(true, 0, x0, y2) → COND1(gr(x0, y2), 0, p(x0), y2)

The TRS R consists of the following rules:

gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x

The set Q consists of the following terms:

gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.
By instantiating [15] the rule COND3(true, 0, x0, y2) → COND1(gr(x0, y2), 0, p(x0), y2) we obtained the following new rules:

COND3(true, 0, s(z0), z1) → COND1(gr(s(z0), z1), 0, p(s(z0)), z1)



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ Narrowing
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ Narrowing
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Narrowing
                                                      ↳ QDP
                                                        ↳ DependencyGraphProof
                                                          ↳ QDP
                                                            ↳ Instantiation
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ QDP
                                                                    ↳ Instantiation
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ AND
                                                                            ↳ QDP
                                                                              ↳ UsableRulesProof
                                                                                ↳ QDP
                                                                                  ↳ QReductionProof
                                                                                    ↳ QDP
                                                                                      ↳ Instantiation
QDP
                                                                                          ↳ UsableRulesProof
                                                                            ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

COND2(false, 0, s(x1), z1) → COND3(true, 0, s(x1), z1)
COND1(true, 0, y1, y2) → COND2(false, 0, y1, y2)
COND3(true, 0, s(z0), z1) → COND1(gr(s(z0), z1), 0, p(s(z0)), z1)

The TRS R consists of the following rules:

gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x

The set Q consists of the following terms:

gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ Narrowing
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ Narrowing
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Narrowing
                                                      ↳ QDP
                                                        ↳ DependencyGraphProof
                                                          ↳ QDP
                                                            ↳ Instantiation
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ QDP
                                                                    ↳ Instantiation
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ AND
                                                                            ↳ QDP
                                                                              ↳ UsableRulesProof
                                                                                ↳ QDP
                                                                                  ↳ QReductionProof
                                                                                    ↳ QDP
                                                                                      ↳ Instantiation
                                                                                        ↳ QDP
                                                                                          ↳ UsableRulesProof
QDP
                                                                                              ↳ Rewriting
                                                                            ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

COND2(false, 0, s(x1), z1) → COND3(true, 0, s(x1), z1)
COND1(true, 0, y1, y2) → COND2(false, 0, y1, y2)
COND3(true, 0, s(z0), z1) → COND1(gr(s(z0), z1), 0, p(s(z0)), z1)

The TRS R consists of the following rules:

gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(s(x)) → x
gr(0, x) → false

The set Q consists of the following terms:

gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule COND3(true, 0, s(z0), z1) → COND1(gr(s(z0), z1), 0, p(s(z0)), z1) at position [2] we obtained the following new rules:

COND3(true, 0, s(z0), z1) → COND1(gr(s(z0), z1), 0, z0, z1)



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ Narrowing
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ Narrowing
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Narrowing
                                                      ↳ QDP
                                                        ↳ DependencyGraphProof
                                                          ↳ QDP
                                                            ↳ Instantiation
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ QDP
                                                                    ↳ Instantiation
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ AND
                                                                            ↳ QDP
                                                                              ↳ UsableRulesProof
                                                                                ↳ QDP
                                                                                  ↳ QReductionProof
                                                                                    ↳ QDP
                                                                                      ↳ Instantiation
                                                                                        ↳ QDP
                                                                                          ↳ UsableRulesProof
                                                                                            ↳ QDP
                                                                                              ↳ Rewriting
QDP
                                                                                                  ↳ UsableRulesProof
                                                                            ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

COND2(false, 0, s(x1), z1) → COND3(true, 0, s(x1), z1)
COND1(true, 0, y1, y2) → COND2(false, 0, y1, y2)
COND3(true, 0, s(z0), z1) → COND1(gr(s(z0), z1), 0, z0, z1)

The TRS R consists of the following rules:

gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(s(x)) → x
gr(0, x) → false

The set Q consists of the following terms:

gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ Narrowing
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ Narrowing
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Narrowing
                                                      ↳ QDP
                                                        ↳ DependencyGraphProof
                                                          ↳ QDP
                                                            ↳ Instantiation
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ QDP
                                                                    ↳ Instantiation
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ AND
                                                                            ↳ QDP
                                                                              ↳ UsableRulesProof
                                                                                ↳ QDP
                                                                                  ↳ QReductionProof
                                                                                    ↳ QDP
                                                                                      ↳ Instantiation
                                                                                        ↳ QDP
                                                                                          ↳ UsableRulesProof
                                                                                            ↳ QDP
                                                                                              ↳ Rewriting
                                                                                                ↳ QDP
                                                                                                  ↳ UsableRulesProof
QDP
                                                                                                      ↳ QReductionProof
                                                                            ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

COND2(false, 0, s(x1), z1) → COND3(true, 0, s(x1), z1)
COND1(true, 0, y1, y2) → COND2(false, 0, y1, y2)
COND3(true, 0, s(z0), z1) → COND1(gr(s(z0), z1), 0, z0, z1)

The TRS R consists of the following rules:

gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
gr(0, x) → false

The set Q consists of the following terms:

gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

p(0)
p(s(x0))



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ Narrowing
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ Narrowing
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Narrowing
                                                      ↳ QDP
                                                        ↳ DependencyGraphProof
                                                          ↳ QDP
                                                            ↳ Instantiation
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ QDP
                                                                    ↳ Instantiation
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ AND
                                                                            ↳ QDP
                                                                              ↳ UsableRulesProof
                                                                                ↳ QDP
                                                                                  ↳ QReductionProof
                                                                                    ↳ QDP
                                                                                      ↳ Instantiation
                                                                                        ↳ QDP
                                                                                          ↳ UsableRulesProof
                                                                                            ↳ QDP
                                                                                              ↳ Rewriting
                                                                                                ↳ QDP
                                                                                                  ↳ UsableRulesProof
                                                                                                    ↳ QDP
                                                                                                      ↳ QReductionProof
QDP
                                                                                                          ↳ ForwardInstantiation
                                                                            ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

COND2(false, 0, s(x1), z1) → COND3(true, 0, s(x1), z1)
COND1(true, 0, y1, y2) → COND2(false, 0, y1, y2)
COND3(true, 0, s(z0), z1) → COND1(gr(s(z0), z1), 0, z0, z1)

The TRS R consists of the following rules:

gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
gr(0, x) → false

The set Q consists of the following terms:

gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By forward instantiating [14] the rule COND1(true, 0, y1, y2) → COND2(false, 0, y1, y2) we obtained the following new rules:

COND1(true, 0, s(y_0), x1) → COND2(false, 0, s(y_0), x1)



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ Narrowing
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ Narrowing
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Narrowing
                                                      ↳ QDP
                                                        ↳ DependencyGraphProof
                                                          ↳ QDP
                                                            ↳ Instantiation
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ QDP
                                                                    ↳ Instantiation
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ AND
                                                                            ↳ QDP
                                                                              ↳ UsableRulesProof
                                                                                ↳ QDP
                                                                                  ↳ QReductionProof
                                                                                    ↳ QDP
                                                                                      ↳ Instantiation
                                                                                        ↳ QDP
                                                                                          ↳ UsableRulesProof
                                                                                            ↳ QDP
                                                                                              ↳ Rewriting
                                                                                                ↳ QDP
                                                                                                  ↳ UsableRulesProof
                                                                                                    ↳ QDP
                                                                                                      ↳ QReductionProof
                                                                                                        ↳ QDP
                                                                                                          ↳ ForwardInstantiation
QDP
                                                                                                              ↳ ForwardInstantiation
                                                                            ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

COND2(false, 0, s(x1), z1) → COND3(true, 0, s(x1), z1)
COND1(true, 0, s(y_0), x1) → COND2(false, 0, s(y_0), x1)
COND3(true, 0, s(z0), z1) → COND1(gr(s(z0), z1), 0, z0, z1)

The TRS R consists of the following rules:

gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
gr(0, x) → false

The set Q consists of the following terms:

gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By forward instantiating [14] the rule COND3(true, 0, s(z0), z1) → COND1(gr(s(z0), z1), 0, z0, z1) we obtained the following new rules:

COND3(true, 0, s(s(y_1)), x1) → COND1(gr(s(s(y_1)), x1), 0, s(y_1), x1)



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ Narrowing
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ Narrowing
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Narrowing
                                                      ↳ QDP
                                                        ↳ DependencyGraphProof
                                                          ↳ QDP
                                                            ↳ Instantiation
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ QDP
                                                                    ↳ Instantiation
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ AND
                                                                            ↳ QDP
                                                                              ↳ UsableRulesProof
                                                                                ↳ QDP
                                                                                  ↳ QReductionProof
                                                                                    ↳ QDP
                                                                                      ↳ Instantiation
                                                                                        ↳ QDP
                                                                                          ↳ UsableRulesProof
                                                                                            ↳ QDP
                                                                                              ↳ Rewriting
                                                                                                ↳ QDP
                                                                                                  ↳ UsableRulesProof
                                                                                                    ↳ QDP
                                                                                                      ↳ QReductionProof
                                                                                                        ↳ QDP
                                                                                                          ↳ ForwardInstantiation
                                                                                                            ↳ QDP
                                                                                                              ↳ ForwardInstantiation
QDP
                                                                                                                  ↳ ForwardInstantiation
                                                                            ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

COND2(false, 0, s(x1), z1) → COND3(true, 0, s(x1), z1)
COND3(true, 0, s(s(y_1)), x1) → COND1(gr(s(s(y_1)), x1), 0, s(y_1), x1)
COND1(true, 0, s(y_0), x1) → COND2(false, 0, s(y_0), x1)

The TRS R consists of the following rules:

gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
gr(0, x) → false

The set Q consists of the following terms:

gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By forward instantiating [14] the rule COND2(false, 0, s(x1), z1) → COND3(true, 0, s(x1), z1) we obtained the following new rules:

COND2(false, 0, s(s(y_0)), x1) → COND3(true, 0, s(s(y_0)), x1)



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ Narrowing
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ Narrowing
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Narrowing
                                                      ↳ QDP
                                                        ↳ DependencyGraphProof
                                                          ↳ QDP
                                                            ↳ Instantiation
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ QDP
                                                                    ↳ Instantiation
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ AND
                                                                            ↳ QDP
                                                                              ↳ UsableRulesProof
                                                                                ↳ QDP
                                                                                  ↳ QReductionProof
                                                                                    ↳ QDP
                                                                                      ↳ Instantiation
                                                                                        ↳ QDP
                                                                                          ↳ UsableRulesProof
                                                                                            ↳ QDP
                                                                                              ↳ Rewriting
                                                                                                ↳ QDP
                                                                                                  ↳ UsableRulesProof
                                                                                                    ↳ QDP
                                                                                                      ↳ QReductionProof
                                                                                                        ↳ QDP
                                                                                                          ↳ ForwardInstantiation
                                                                                                            ↳ QDP
                                                                                                              ↳ ForwardInstantiation
                                                                                                                ↳ QDP
                                                                                                                  ↳ ForwardInstantiation
QDP
                                                                                                                      ↳ QDPSizeChangeProof
                                                                            ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

COND3(true, 0, s(s(y_1)), x1) → COND1(gr(s(s(y_1)), x1), 0, s(y_1), x1)
COND2(false, 0, s(s(y_0)), x1) → COND3(true, 0, s(s(y_0)), x1)
COND1(true, 0, s(y_0), x1) → COND2(false, 0, s(y_0), x1)

The TRS R consists of the following rules:

gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
gr(0, x) → false

The set Q consists of the following terms:

gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ Narrowing
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ Narrowing
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Narrowing
                                                      ↳ QDP
                                                        ↳ DependencyGraphProof
                                                          ↳ QDP
                                                            ↳ Instantiation
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ QDP
                                                                    ↳ Instantiation
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ AND
                                                                            ↳ QDP
QDP
                                                                              ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

COND2(true, s(x0), x1, y2) → COND1(gr(s(add(x0, x1)), y2), x0, x1, y2)
COND1(true, s(x0), y1, y2) → COND2(true, s(x0), y1, y2)

The TRS R consists of the following rules:

add(0, x) → x
add(s(x), y) → s(add(x, y))
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
p(0) → 0
p(s(x)) → x

The set Q consists of the following terms:

gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
add(0, x0)
add(s(x0), x1)
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ Narrowing
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ Narrowing
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Narrowing
                                                      ↳ QDP
                                                        ↳ DependencyGraphProof
                                                          ↳ QDP
                                                            ↳ Instantiation
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ QDP
                                                                    ↳ Instantiation
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ AND
                                                                            ↳ QDP
                                                                            ↳ QDP
                                                                              ↳ UsableRulesProof
QDP
                                                                                  ↳ QReductionProof

Q DP problem:
The TRS P consists of the following rules:

COND2(true, s(x0), x1, y2) → COND1(gr(s(add(x0, x1)), y2), x0, x1, y2)
COND1(true, s(x0), y1, y2) → COND2(true, s(x0), y1, y2)

The TRS R consists of the following rules:

add(0, x) → x
add(s(x), y) → s(add(x, y))
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
gr(0, x) → false

The set Q consists of the following terms:

gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
add(0, x0)
add(s(x0), x1)
p(0)
p(s(x0))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

p(0)
p(s(x0))



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ Narrowing
                                  ↳ QDP
                                    ↳ Narrowing
                                      ↳ QDP
                                        ↳ Narrowing
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Narrowing
                                                      ↳ QDP
                                                        ↳ DependencyGraphProof
                                                          ↳ QDP
                                                            ↳ Instantiation
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ QDP
                                                                    ↳ Instantiation
                                                                      ↳ QDP
                                                                        ↳ DependencyGraphProof
                                                                          ↳ AND
                                                                            ↳ QDP
                                                                            ↳ QDP
                                                                              ↳ UsableRulesProof
                                                                                ↳ QDP
                                                                                  ↳ QReductionProof
QDP
                                                                                      ↳ QDPSizeChangeProof

Q DP problem:
The TRS P consists of the following rules:

COND2(true, s(x0), x1, y2) → COND1(gr(s(add(x0, x1)), y2), x0, x1, y2)
COND1(true, s(x0), y1, y2) → COND2(true, s(x0), y1, y2)

The TRS R consists of the following rules:

add(0, x) → x
add(s(x), y) → s(add(x, y))
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
gr(0, x) → false

The set Q consists of the following terms:

gr(0, x0)
gr(s(x0), 0)
gr(s(x0), s(x1))
add(0, x0)
add(s(x0), x1)

We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs: